Đồ Án Xây dựng bộ luật hệ mờ từ tập mẫu

Thảo luận trong 'Điện - Điện Tử' bắt đầu bởi Bống Hà, 15/1/14.

  1. Bống Hà

    Bống Hà New Member

    Bài viết:
    5,424
    Được thích:
    2
    Điểm thành tích:
    0
    Xu:
    0Xu
    XÂY DỰNG BỘ LUẬT HỆ MỜ TỪ TẬP MẪU
    TểM TẮT
    Một phương pháp tổng hợp được phát triển để tạo ra các luật mờ từ dữ liệu số. Phương pháp mới này bao gồm năm bước sau: Bước 1 phân chia không gian đầu vào và đầu ra của dữ liệu số tới vùng mờ; Bước 2 tạo ra các luật mờ từ các dữ liệu đó cho; Bước 3 xác định một mức độ của mỗi luật được tạo ra với mục đích giải quyết xung đột giữa các luật tạo ra; Bước 4 tạo ra sự kết hợp cơ sở luật mờ dựa trên cả các luật được tạo và luật ngôn ngữ của các chuyên gia. Bước 5 xác định một ánh xạ từ không gian đầu vào đến không gian đầu ra dựa trên cơ sở luật kết hợp mờ bằng cách sử dụng thủ tục defuzzifying. Ánh xạ này được chứng minh là có khả năng xấp xỉ một hàm thực với độ chính xác tùy ý. Ứng dụng để kiểm soát và dự đoán một chuỗi các vấn đề được trỡnh bày. Đối với vấn đề này, hiệu suất của phương pháp này được so sánh với một bộ điều khiển mạng neural và điều khiển luật mờ hạn chế; Phương pháp mới này cho thấy hiệu suất tốt nhất. Đối với vấn đề thời gian dự đoán , kết quả được so sánh bằng cách sử dụng phương pháp mới và dựđoán mạng neural cho chuỗi thời gian hỗn loạn Mackey-Glass.
    1. GIỚI THIỆU
    Hầu hết vấn đề kiểm soát và xử lý tớn hiệu, thụng tin liờn quan đến thiết kế, thẩm định có thể được phân thành hai loại: thông tin thu được từ các cảm biến đo lường, ngôn ngữ thông tin thu được từ các chuyên gia. Hầu hết hiện nay cách tiếp cận việc điều khiển thông minh và phương pháp xử lý tớn hiệu là heuristic trong tự nhiờn, nghĩa là, nú kết hợp một số tiờu chuẩn điều khiển các phương thức xử lý tớn hiệu với cỏc hệ chuyờn gia trong một cỏch adhoc cho một vấn đề cụ thể; Bằng cách mô phỏng chỉ ra rằng phương pháp tiếp cận mới làm việc tốt cho các vấn đề cụ thể. Cỏch tiếp cận này cú hai weakpoints:
    1) Nó phụ thuộc vào nhiều vấn đề, nghĩa là, một phương pháp có thể làm việc tốt cho một vấn đề này nhưng không phù hợp cho vấn đề khác.
    2) Khụng cú định dạng phổ biến chung cho cỏc mẫu và cỏc khớa cạnh khỏc nhau của kiểm soát hay các chiến lược xử lý tớn hiệu, làm cho việc phõn tớch lý thuyết cho các phương pháp tiếp cận rất khó khăn. Trong bài báo này, tác giả đề xuất một phương pháp chung để kết hợp cả hai số và ngôn ngữ thông tin vào một khuôn khổ chung - luật mờ.
    Giả sử ta có bài toán sau: có một hệ thống điều khiển phức tạp trong đó con người điều khiển là chủ yếu. môi trường làm việc của con người là nguy hiểm mà không có mô hỡnh toỏn học tồn tại cho nú, hay, mụ hỡnh toỏn học là phi tuyến mạnh để một phương pháp thiết kế không tồn tại. Nhiệm vụ ở đây là để thiết kế một hệ thống kiểm soát để thay thế các điều khiển của con người (xem hỡnh. 1).



    Hỡnh 1: Một vấn đề thực hiện: Thiết kế một hệ thống điều khiển để thay thế con người điều khiển.


    Để thiết kếmột hệ thống điều khiển, đầu tiên chúng ta cần phải xác định những thông tin nào có sẵn. Chúng ta giả định rằng không có mô hỡnh toỏn học, nghĩa là, chỳng ta thiết kế theo model-free. Kể từ đó đó là một người điều khiển con người đó thành cụng trong việc kiểm soỏt hệ thống, cú hai loại thụng tin cú sẵn cho chỳng tụi: 1) những kinh nghiệm của bộ điều khiển của con người, và, 2) lấy mẫu đầu vào-đầu ra (nhà nước kiểm soát) cặp được ghi nhận từ kiểm soát thành công bởi bộ điều khiển của con người. Kinh nghiệm của bộ điều khiển của con người thường được diễn tả như một số "ngôn ngữ IF-THEN" quy tắc mà nhà nước trong tỡnh hỡnh những gỡ (s) mà hành động (s) nên được thực hiện. Các mẫu đầu vào-đầu ra cặp là một số dữ liệu số mà cung cấp cho các giá trị cụ thể của đầu vào và đầu ra thành công tương ứng.
    Mỗi thông tin khi đứng một mỡnh thường không đầy đủ. Mặc dù hệ thống điều khiển thành công bởi con người, một số thông tin sẽ bị mất khi người điều khiển diễn đạt kinh nghiệm của họ bằng các quy tắc ngôn ngữ. Do đó, các quy tắc ngôn ngữ một mỡnh thường không đủ để thiết kế một hệ thống kiểm soát thành công. Mặt khác, các thông tin từ các cặp mẫu input-output thường cũng không đủ để thiết kế , bởi vỡ quỏ trỡnh hoạt động thường không thể bao gồm tất cả những tỡnh huống hệ thống điều khiển sẽ phải đối mặt. Nếu một cặp quy tắc ngôn ngữ và dữ liệu số là những thông tin duy nhất chúng ta có thể nhận được như vậy cho một thiết kế hệ thống điều khiển, trường hợp thú vị nhất là khi sự kết hợp của hai loại thông tin là đủ cho một thiết kế thành công.
    Kiểm soỏt tập mờ là một cỏch tiếp cận hiệu quả để sử dụng luật ngôn ngữ trong khi điểu khiển mạng neural là phù hợp cho việc sử dụng cặp dữ liệu số (tức là input - output). Hiện nay điều khiển tậo mờ chỉ sử dụng luật ngôn ngữ, trong khi mạng neural hiện nay chỉ sử dụng cặp dữ liệu số . Điều này dẫn đến câu hỏi sau đây: "Có thể phát triển một phương pháp tiếp cận chung mà kết hợp cả hai loại thông tin vào một khuôn mẫu chung, và sử dụng cả hai thông tin đồng thời và hợp tác, để giải quyết điều khiển thiết kế các vấn đề tương tự" Trong bài báo này? , tác giả phát triển nó như một cách tiếp cận chung.
    Những ý tưởng chính của phương pháp tiếp cận mới của tác giả là để tạo ra các luật mờ từ cặp dữ liệu cặp, thu thập những luật mờ này và các quy tắc mờ ngôn ngữ vào thành một luật mờ cơ sở, và cuối cùng là thiết kế một điều khiển hay hệ thống xử lý tớn hiệu dựa trờn kết hợp luật mờ cơ sở này.
     

    Các file đính kèm:

Đang tải...