Tài liệu Tổng hợp vật liệu nano

Thảo luận trong 'Hóa Học' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    1. Introduction 1
    Bibliography 8
    2. Controlled Growth of Nanowires and Nanobelts 11
    2.1 Introduction . 13
    2.2 Oxides nanowires and nanobelts 14
    2.2.1. ZnO 14
    2.2.2. SnO2 . 19
    2.2.3. In2O3 . 23
    2.2.4. MgO . 26
    2.2.4.1. Controlled growth of MgO nanostructures 27
    2.2.4.2. Direct observation of the growth process of
    MgO nanoflowers . 29
    2.2.5. Al2O3 . 32
    2.3 Sulfides nanowires and nanobelts 37
    2.3.1. ZnS 37
    2.3.2. CdS 42
    2.4 Doping of nanowires and nanobelts 47
    2.4.1. S-doped ZnO nanowires . 47
    2.4.2. Ce-doped ZnO nanostructures . 48
    2.4.3. Sn-doped ZnO nanobelts . 51
    2.4.4. Mn-doped ZnS nanobelts 53
    Bibliography 56
    v
    vi Contents
    3. Design and Synthesis of One-Dimensional Heterostructures 67
    3.1 Introduction . 69
    3.2 Synthesis of one-dimensional heterostructures 70
    3.2.1. Coaxial core/shell structure (nanocable) and biaxial
    nanowires 70
    3.2.2. Heterojunction and superlattice nanowire
    structure . 77
    3.2.3. Complex branch structure (hierarchical structure) . 82
    3.3 Concluding remarks 96
    Bibliography 97
    4. Quasi-Zero Dimensional Nanoarrays 101
    4.1 Synthesis of two-dimensional colloid crystals 103
    4.1.1. Drop coating 105
    4.1.2. Spin-coating . 107
    4.1.3. Perpendicular withdrawing . 108
    4.2 Ordered nanoarrays based on two-dimensional colloidal
    crystal templates 110
    4.2.1. Ordered pore arrays 112
    4.2.1.1. ZnO-ordered pore arrays based on
    electro-deposition and colloidal
    monolayers . 112
    4.2.1.2. Au-ordered through-pore arrays based
    on electro-deposition and colloidal
    monolayers . 120
    4.2.1.3. SnO2 mono- and multi-layered nanostructured
    porous films based on solution-dipping
    templates . 128
    4.2.1.4. Fe2O3-ordered pore arrays based on
    solution-dipping templates and colloidal
    monolayer 133
    4.2.1.5. In2O3-ordered pore arrays based on
    solution-dipping templates and colloidal
    monolayers . 141
    4.2.2. Two-dimensional ordered polymer hollow sphere
    and convex structure arrays based on monolayer
    pore films 147
    4.2.3. Au nanoparticle arrays 153
    Bibliography 159
    Contents vii
    5. Nanoarray Synthesis and Characterization based on
    Alumina Templates 165
    5.1 Preparation techniques of ordered channel AAM (anodization
    alumina membrane) templates 167
    5.1.1. Preparation of ordered channel AAM templates 168
    5.1.2. Structure and characterization of ordered channel
    AAM templates 170
    5.1.3. Exploration of ordered channel formation
    mechanism . 171
    5.2 Synthesis and characterization of ordered nanoarrays . 174
    5.2.1. Ordered nanoarrays of elements 175
    5.2.1.1. Ordered nanoarrays of metal nanowires and
    nanotubes (Pb, Ag, Cu, Au) 175
    5.2.1.2. Ordered nanoarrays of semimetal nanowires
    and nanotubes 192
    5.2.1.3. Ordered nanoarrays of Sb nanowires and
    nanotubes 206
    5.2.1.4. Ordered nanoarrays of semiconductor
    nanowires and nanotubes . 210
    5.2.1.5. Ordered nanoarrays of carbon nanotubes . 214
    5.2.2. Ordered nanoarrays of binary compound
    nanowires 226
    5.2.2.1. Ordered nanoarrays of alloy nanowires 226
    5.2.2.2. Ordered nanoarrays of oxide nanowires and
    nanotubes 232
    5.2.2.3. Ordered nanoarrays of sulphide, selenide,
    telluride and ionide nanowires . 247
    5.2.3. Ordered nanoarrays of ternary compound
    nanowires 268
    5.2.3.1. Co-Ni-P alloy nanoarrays . 268
    5.2.3.2. Ni-W-P alloy nanowire arrays 271
    Bibliography 275
    6. Controlled Growth of Carbon Nanotubes 287
    6.1 Introduction . 289
    6.2 Preparation, morphologies and structures of Small diameter
    carbon nantubes (CNTs) 291
    6.2.1. Multi-walled carbon nanotubes (MWNTs) 292
    6.2.2. Single-walled carbon nanotubes (SWNTs) 295
    6.2.3. Discussion and analysis . 295
    viii Contents
    6.3 Very long carbon nanotubes and continuous carbon nanotube
    yarns (fibers) . 300
    6.3.1. Very long carbon nanotubes . 301
    6.3.2. Spinning continuous carbon nanotube
    yarns (fibers) 304
    6.4 Controlled synthesis of single-walled carbon nanotubes 306
    6.4.1. Preparation of pure single-walled carbon
    nanotubes 307
    6.4.2. Direct synthesis of a macroscale single-walled carbon
    nanotubes non-woven material . 312
    6.4.3. Synthesis of random networks of single-walled carbon
    nanotubes 316
    6.5 Synthesis of double-walled carbon nanotubes (DWNTs) 319
    Bibliography 323
    7. Synthesis of Inorganic Non-carbon Nanotubes 327
    7.1 Introduction . 329
    7.2 Synthesis of inorganic nanotubes 330
    7.2.1. Inorganic nanotubes based on two-dimensional
    structures 331
    7.2.1.1. Inorganic nanotubes based on graphite
    (carbon nanotubes) . 331
    7.2.1.2. Inorganic nanotubes based on transition
    metal chalcogenides and halides 331
    7.2.1.3. Inorganic nanotubes based on boron nitride
    and the derivatives . 339
    7.2.1.4. Inorganic nanotubes based on rare earth
    and transition metal oxides and their
    derivatives 340
    7.2.2. Inorganic nanotubes based on quasi-two-dimensional
    structures 342
    7.2.3. Inorganic nanotubes based on three-dimensional
    structures 350
    7.2.4. Formation mechanisms of inorganic nanotubes . 355
    7.3 Concluding remarks 360
    Bibliography 360
    Contents ix
    8. Novel Properties of Nanomaterials 367
    8.1 Introduction . 369
    8.2 Polarization characteristics of metal nanowire microarrays
    embedded in anodic alumina membrane templates . 369
    8.2.1. Introduction . 369
    8.2.2. Optical measurement . 370
    8.2.3. Polarization characteristics . 371
    8.2.3.1. Cu/AAM . 371
    8.2.3.2. Ag/AAM . 374
    8.2.3.3. Pb/AAM . 375
    8.2.4. Theoretical calculation 376
    8.2.4.1. Theory model 377
    8.2.4.2. Numerical simulation . 380
    8.2.5. Conclusion . 388
    8.3 Electronic and magnetic properties of Bi-based nanowire
    arrays . 388
    8.3.1. Bi nanowire arrays . 389
    8.3.2. Bi-Bi homogeneous nanowire junction 391
    8.3.3. Y-segment Bi nanowire array 392
    8.3.4. Bi-Sb segment nanowire junction 394
    8.4 Thermal expansion properties of nanowire arrays 395
    8.4.1. AgI nanowire arrays . 395
    8.4.2. Bi nanowire arrays . 398
    8.4.3. Cu nanowire arrays 401
    Bibliography 403
    9. Applications 407
    9.1 Introduction . 409
    9.2 Sensors 409
    9.2.1. SnO2 gas sensors 409
    9.2.2. Biosensors 420
    9.2.2.1. Nanodevices for electrical detection of single
    viruses 420
    9.2.2.2. Nanoelectromechanical devices for detection
    of viruses . 426
    9.2.2.3. Biological magnetic sensors . 431
    9.2.2.4. Biotin-modified Si nanowire nanosensors for
    detection of protein binding . 435
    x Contents
    9.2.2.5. Bio-conjugated nanoparticles for rapid
    detection of single bacterial cell . 438
    9.2.2.6. Near-infrared optical sensors based on
    single-walled carbon nanotubes . 440
    9.2.3. Chemical sensors . 442
    9.3 Field emission of carbon nanotubes and its application 445
    9.4 Light polarization 448
    9.5 Light-bulb filaments made of carbon nanotube yarns 453
    9.6 Electronic and optoelectronic nanoscale devices . 453
    Bibliography 457
    Index 463
     

    Các file đính kèm:

Đang tải...