Tài liệu Tổng hợp, cấu trúc, tính chất và ứng dụng của ống nanocarbon

Thảo luận trong 'Hóa Học' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    Contents
    Foreword . V
    References . IX
    Preface . XI
    Introduction to the Important and Exciting Aspects of
    Carbon-Nanotube Science and Technology
    David Tom´anek, Ado Jorio, Mildred S. Dresselhaus, and Gene
    Dresselhaus 1
    1 Introduction 1
    2 Applications and Metrology 3
    3 Synthesis . 4
    4 Defect Control 5
    5 Mechanical and Thermal Properties . 5
    6 Electronic Structure and Atomic Arrangement 6
    7 Advances in Photophysics 8
    8 Transport Properties . 9
    9 Double-Wall Carbon Nanotubes . 10
    10 Chemical Reactivity . 10
    11 Related Structures . 10
    12 Graphene 11
    13 Outlook 11
    Index 12
    Potential Applications of Carbon Nanotubes
    Morinobu Endo, Michael S. Strano, and Pulickel M. Ajayan 13
    1 Introduction 13
    2 Applications of Carbon Nanotubes 16
    2.1 Carbon Nanotubes in Electronics . 17
    2.2 Carbon Nanotubes in Energy Applications . 22
    2.3 Carbon Nanotubes for Mechanical Applications . 27
    2.4 Carbon-Nanotube Sensors . 31
    2.5 Carbon Nanotubes in Field Emission
    and Lighting Applications . 36
    2.6 Carbon Nanotubes for Biological Applications 38
    XIV Contents
    2.7 Carbon Nanotubes in Miscellaneous Applications . 42
    2.8 Environmental and Health Effects of Carbon Nanotubes . 45
    3 Conclusions . 46
    References . 49
    Index 61
    Carbon-Nanotube Metrology
    Ado Jorio, Esko Kauppinen, and Abdou Hassanien . 63
    1 Introduction 63
    2 Electronic Microscopy 65
    2.1 Introduction . 65
    2.2 Sample Preparation . 66
    2.3 Morphology 67
    2.4 Atomic Structure by HRTEM 68
    2.5 Chiral Indices Determination by Electron Diffraction 70
    2.5.1 Bessel-Function Analysis . 70
    2.5.2 Intrinsic Layerline Distance Analysis . 70
    3 Scanning Probe Microscopy . 71
    3.1 Introduction . 71
    3.2 Sample Preparation . 73
    3.3 Imaging the Structure and Electronic Properties of SWNTs 73
    3.4 Single-Electron States of SWNTs . 76
    3.5 Defects 77
    3.6 Local Vibrational Spectroscopy in SWNTs . 78
    4 Optics . 79
    4.1 Basic Principles 79
    4.2 Optical Absorption . 82
    4.3 Resonance Raman Spectroscopy 83
    4.3.1 The Radial Breathing Mode (RBM) . 85
    4.3.2 The Tangential Modes (G Band) 87
    4.3.3 The Disorder-Induced Feature (D Band) . 89
    4.3.4 Other Raman Features . 89
    4.4 Photoluminescence 90
    5 Summary and Outlook . 91
    References . 93
    Index 99
    Carbon Nanotube Synthesis and Organization
    Ernesto Joselevich, Hongjie Dai, Jie Liu, Kenji Hata,
    and AlanH. Windle . 101
    1 Introduction 102
    2 Bulk Production Methods 103
    2.1 Arc Discharge and Laser Vaporization . 103
    2.2 Chemical Vapor Deposition (CVD) 103
    2.3 Mass Production . 105
    Contents XV
    2.4 Toward Selective Synthesis . 106
    3 Purification . 107
    3.1 Dry Methods . 107
    3.2 Wet Methods . 108
    4 Sorting . 109
    4.1 Classification of Sorting Methods and Selective Processes 109
    4.2 Nondestructive Sorting 110
    4.3 Selective Elimination 114
    4.4 General Principles and Perspectives of Sorting 115
    5 Organization into Fibers . 116
    5.1 Processing Principles 117
    5.2 Liquid Suspensions of Carbon Nanotubes 118
    5.3 Spinning Carbon Nanotube Fibers from Liquid-
    Crystalline Suspensions 119
    5.4 Wet Spinning of CNT Composite Fibers . 120
    5.5 Dry Spinning from Carbon Nanotube Forests . 122
    5.6 Direct Spinning from Carbon Nanotube Fibers
    from the CVD Reaction Zone 123
    6 Organization on Surfaces . 125
    6.1 Vertically Aligned Growth and Supergrowth 126
    6.1.1 Supergrowth 126
    6.1.2 SWNT-Solid 131
    6.2 Organized Assembly of Preformed Nanotubes 133
    6.3 Horizontally Aligned Growth . 137
    6.3.1 Field-Directed Growth . 137
    6.3.2 Flow-Directed Growth . 139
    6.3.3 Surface-Directed Growth: “Nanotube Epitaxy” 141
    6.3.4 Patterned Growth on Surfaces 147
    7 Summary and Outlook . 148
    References . 149
    Index 163
    Mechanical Properties, Thermal Stability and Heat
    Transport in Carbon Nanotubes
    Takahiro Yamamoto, Kazuyuki Watanabe, and Eduardo R. Hern´andez 165
    1 Introduction 165
    2 Mechanical Properties and Thermal Stability of Nanotubes . 167
    2.1 Elasticity at the Nanoscale . 167
    2.2 Mechanical Properties of Nanotubes: Elastic Regime 167
    2.3 Beyond the Elastic Regime . 172
    2.4 Thermal Stability of Nanotubes 175
    2.5 Summary of Mechanical Properties and Thermal Stability . 177
    3 Heat-Transport Properties 178
    3.1 Ballistic Heat Transport in SWNTs . 178
    3.1.1 Landauer Theory for Phonon Transport 178
    XVI Contents
    3.1.2 Quantization of Thermal Conductance . 180
    3.1.3 Electron Contribution to the Thermal Conductance 181
    3.2 Quasiballistic Heat Transport in SWNTs 182
    3.2.1 Length Effect of the Thermal Conductivity . 182
    3.2.2 Influence of Defects on the Thermal Conductivity . 184
    3.3 Diffusive Heat Transport in SWNTs . 185
    3.4 Heat Transport in MWNTs 186
    3.5 Summary of Heat Transport . 188
    4 Summary and Outlook . 188
    References . 189
    Index 194
    Quasiparticle and Excitonic Effects in the Optical Response
    of Nanotubes and Nanoribbons
    Catalin D. Spataru, Sohrab Ismail-Beigi, Rodrigo B. Capaz, and
    Steven G. Louie 195
    1 Introduction 196
    2 Methodology 197
    3 First-Principles Studies of the Optical Spectra of SWNTs 199
    4 Diameter and Chirality Dependence of Exciton Properties 204
    5 Symmetries and Selection Rules of Excitons 206
    6 Radiative Lifetime . 210
    7 Pressure, Strain and Temperature Effects . 214
    8 Related Structures: Boron-Nitride Nanotubes
    and Graphene Nanoribbons . 216
    9 Conclusion . 221
    References . 222
    Index 227
    Role of the Aharonov–Bohm Phase in the Optical Properties
    of Carbon Nanotubes
    Tsuneya Ando . 229
    1 Introduction 229
    2 Effective-Mass Description 229
    3 Excitons . 233
    4 Exciton Fine Structure and Aharonov–Bohm Effect 236
    5 Exciton Absorption for Crosspolarized Light 240
    6 Optical Phonons 242
    References . 246
    Index 249
    Excitonic States and Resonance Raman Spectroscopy
    of Single-Wall Carbon Nanotubes
    Riichiro Saito, Cristiano Fantini, and Jie Jiang . 251
    1 Introduction 251
    1.1 Outline 251
    Contents XVII
    1.2 Overview of Resonance Raman Measurements 252
    1.3 Overview of the Raman Intensity Calculation 253
    2 Measurement of Raman Spectra . 255
    2.1 Raman Spectra of SWNTs . 255
    2.2 The Radial Breathing Mode 255
    2.3 G-Band . 257
    2.4 D-Band . 260
    2.5 G-Band . 261
    2.6 Intermediate-Frequency Modes . 262
    2.7 Other Two-Phonon Modes . 264
    3 Resonance Raman Profile 264
    3.1 Experimental Optical Transition Energies 264
    4 Electron–Phonon and Electron–Photon Matrix Elements . 267
    4.1 Extended Tight-Binding Method for Electrons and Phonons 267
    4.2 Dipole Approximation for the Optical Matrix Element . 269
    4.3 Electron–Phonon Matrix Element Calculation 270
    4.4 Extension to the Exciton Matrix Element Calculation . 272
    4.5 Raman Intensity Calculation . 275
    4.6 RBM and G-Band: Length, Type, Chirality,
    and Diameter Dependence . 276
    5 Future Directions, Summary 279
    References . 280
    Index 285
    Photoluminescence: Science and Applications
    Jacques Lefebvre, Shigeo Maruyama, and Paul Finnie . 287
    1 Introduction 287
    2 Basic Photoluminescence Spectroscopy of Isolated Nanotubes . 288
    2.1 Model . 288
    2.2 Absorption . 290
    2.3 Photoluminescence from Isolated SWNTs 291
    2.4 Photoluminescence Excitation Map . 293
    2.5 Exciton Picture . 296
    3 Spectroscopic Properties of Nanotube Photoluminescence . 298
    3.1 Lineshape 298
    3.2 Polarization 299
    3.3 Quantum Efficiency . 300
    3.4 Photoluminescence Imaging 303
    3.5 Time Dependence . 304
    3.6 Phonons . 305
    4 Physical and Chemical Effects 306
    4.1 External Environment . 306
    4.2 External Physical Parameters 308
    5 Applications 310
    5.1 Nanotube Research . 310
    XVIII Contents
    5.2 Wider Applications . 312
    6 Conclusion . 313
    References . 314
    Index 318
    Ultrafast Spectroscopy of Carbon Nanotubes
    Ying-Zhong Ma, Tobias Hertel, Zeev Valy Vardeny,
    Graham R. Fleming, and Leonas Valkunas . 321
    1 Introduction 321
    2 Background 322
    2.1 Instrumentation for Ultrafast Spectroscopy . 322
    2.2 Basics of Nonlinear Optics . 324
    3 Metallic Tubes 327
    4 Semiconducting Tubes . 328
    4.1 Exciton Dynamics 329
    4.2 Low Excitation Densities 330
    4.2.1 Intersubband Relaxation . 331
    4.2.2 Radiative Lifetime . 331
    4.2.3 Correlation of the PL Decay Timescales
    with the Tube Diameter 332
    4.2.4 Environmental and Temperature Effects
    on Exciton Population Dynamics 333
    4.2.5 Transient Absorption of a Chirality-
    Enriched SWNT Preparation . 336
    4.3 High Excitation Densities 338
    4.3.1 Spectroscopic and Dynamic Signatures of High-
    Intensity Excitation . 338
    4.3.2 Theoretical Advances 342
    4.3.3 Exciton Dissociation . 343
    5 Comparison of S-SWNTs with π-Conjugated Polymers . 344
    6 Summary . 346
    References . 347
    Index 352
    Rayleigh Scattering Spectroscopy
    Tony F. Heinz 353
    1 Introduction 353
    2 Elastic Light Scattering 354
    3 Experimental Technique 356
    4 Application of the Technique 360
    4.1 Electronic Transitions of Nanotubes
    of Independently Determined Structure 360
    4.2 Polarization Dependence of Nanotube Electronic Transitions . 361
    4.3 Structural Stability Along the Nanotube Axis 362
    4.4 Nanotube–Nanotube Interactions . 363
    Contents XIX
    5 Outlook 364
    References . 366
    Index 368
    New Techniques for Carbon-Nanotube Study
    and Characterization
    Achim Hartschuh . 371
    1 Introduction 371
    2 Near-Field Optical Microscopy 371
    2.1 Experimental . 372
    2.2 Results 373
    2.2.1 Nanoscale Optical Imaging . 373
    2.2.2 Nanoscale Optical Spectroscopy . 375
    2.3 Outlook . 377
    3 Phonon Spectroscopy Using Inelastic Electron Tunneling . 378
    3.1 Experimental . 378
    3.2 Results 379
    3.3 Outlook . 382
    4 Coherent Phonon Generation and Detection 383
    4.1 Results 384
    4.2 Outlook . 389
    References . 389
    Index 392
    High Magnetic Field Phenomena
    in Carbon Nanotubes
    Junichiro Kono, Robin J. Nicholas, and Stephan Roche 393
    1 Introduction 393
    2 Band Structure in Magnetic Fields 394
    2.1 Parallel Field: Role of the Aharonov–Bohm Phase . 394
    2.2 Perpendicular Field: Onset of Landau Levels . 395
    3 Magnetization 397
    3.1 Theory of the Magnetic Susceptibility . 397
    3.2 Magnetic-Susceptibility Measurements . 399
    4 Magneto-transport 400
    4.1 Disorder and Quantum Interference . 401
    4.2 Weak Localization and Magnetoresistance Oscillations . 401
    4.3 Most Recent Experiments 404
    5 Magneto-Optics . 405
    5.1 Bandgap Shrinkage and Aharonov–Bohm Splitting 406
    5.2 Magnetic Brightening of “Dark” Excitons: Theory 407
    5.3 Magnetic Brightening of “Dark” Excitons: Experiment 410
    5.4 Perpendicular Field Effects . 414
    6 Summary and Remaining Problems 415
    References . 416
    XX Contents
    Index 421
    Carbon-Nanotube Optoelectronics
    Phaedon Avouris, Marcus Freitag, and Vasili Perebeinos . 423
    1 The Nature of the Optically Excited State 423
    2 Exciton Properties 425
    2.1 Low-Energy Exciton Bandstructure –
    Dark and Bright Excitons 425
    2.2 Exciton Radiative and Nonradiative Lifetimes 427
    2.3 Exciton–Optical Phonon Sidebands in Absorption Spectra . 428
    2.4 Impact Excitation, Auger Recombination
    and Exciton Annihilation 430
    2.5 Franz–Keldysh, Stark Effects and Exciton Ionization
    by Electric Fields . 433
    3 Overview of CNT Electronics – Unipolar and Ambipolar FETs 435
    4 Photoconductivity and Light Detection 436
    4.1 Types of Nanotube Photodetectors 436
    4.2 CNT Photoconductor . 437
    4.3 Photocurrent Spectroscopy and Quantum Efficiency . 437
    4.4 Photovoltage in Asymmetric CNTFETs –
    Schottky-Barrier Diodes . 439
    4.5 Photovoltage in a CNT p–n Junction 440
    4.6 Photovoltage Imaging . 441
    5 Electroluminescence . 442
    5.1 Ambipolar Mechanism . 442
    5.2 Mechanism of the Spot Movement in Ambipolar Transistors 443
    5.3 Electroluminescence Spectrum and Efficiency
    of the Radiative Decay 444
    6 Unipolar Mechanism for Infrared Emission 444
    7 Conclusions – Future 446
    References . 448
    Index 453
    Electrical Transport in Single-Wall Carbon Nanotubes
    Michael J. Biercuk, Shahal Ilani, Charles M. Marcus,
    and Paul L. McEuen 455
    1 Introduction and Basic Properties . 455
    1.1 Band Structure . 456
    1.2 1D Transport in Nanotubes 458
    2 Classical (Incoherent) Transport in Nanotubes 460
    2.1 Contacts to Nanotubes: Schottky Barriers . 460
    2.2 The Effect of Disorder . 463
    2.3 Electron–Phonon Scattering in Nanotubes . 464
    3 Nanotube Devices and Advanced Geometries . 466
    3.1 High-Performance Transistors 467
    Contents XXI
    3.2 Radio-Frequency and Microwave Devices . 469
    3.3 P–N Junction Devices . 470
    4 Quantum Transport . 474
    4.1 Quantum Transport in One Dimension 474
    4.1.1 Luttinger Liquid 474
    4.1.2 Ballistic Transport 476
    4.2 Superconducting Proximity Effect . 476
    4.3 Quantum Transport with Ferromagnetic Contacts . 478
    5 Nanotube Quantum Dots . 479
    5.1 Single Dots 480
    5.2 Band and Spin Effects in Single Quantum Dots . 480
    5.2.1 Shell Filling in Nanotube Dots 480
    5.2.2 Nanotube Dots with Ferromagnetic Contacts . 481
    5.3 Kondo Effects in Nanotube Dots 481
    5.3.1 Nonequilibrium Singlet–Triplet Kondo Effect 482
    5.3.2 Orbital and SU(4) Kondo 482
    5.4 Multiple Quantum Dots . 483
    6 Future Directions 484
    References . 485
    Index 492
    Double-Wall Carbon Nanotubes
    Rudolf Pfeiffer, Thomas Pichler, Yoong Ahm Kim, and Hans Kuzmany 495
    1 Introduction 495
    1.1 Fingerprints of Double-Wall Carbon Nanotubes . 496
    2 Preparation of Double-Wall Carbon Nanotubes 496
    2.1 DWNT Growth from Chemical Vapor Deposition . 497
    2.2 DWNT Growth from Precursor Material . 501
    2.2.1 DWNT Growth from Fullerene Peapods 501
    2.2.2 DWNT Growth from Ferrocene . 503
    2.2.3 DWNT Growth from Other Carbon Precursors 506
    2.2.4 Theoretical Models for the Fullerene Coalescence 507
    3 Properties and Applications of DWNTs 508
    3.1 Electronic and Optical Properties, Transport . 508
    3.1.1 Model Calculations 509
    3.1.2 Experimental Results for Electronics and Structure 511
    3.1.3 Transport 511
    3.2 Raman Scattering 512
    3.2.1 The Nature of the Radial Breathing Mode Response . 513
    3.2.2 Tangential Modes and Overtones 513
    3.2.3 Temperature, Pressure, and Doping Effects . 514
    3.3 13C Substitution and Nuclear Magnetic Resonance 516
    3.4 Thermal and Chemical Stability, Mechanical Properties 517
    3.4.1 Thermal Stability . 518
    XXII Contents
    3.4.2 Pore Structure and Oxidative Stability
    of the Bundled DWNTs . 518
    3.4.3 Mechanical Properties . 520
    4 Summary and Outlook . 521
    4.1 Outlook . 522
    References . 523
    Index 530
    Doped Carbon Nanotubes: Synthesis, Characterization
    and Applications
    Mauricio Terrones, Antonio G. Souza Filho, and Apparao M. Rao 531
    1 Introduction 531
    2 Exohedral Doping or Intercalation . 532
    3 Endohedral Doping or Encapsulation 533
    4 Inplane or Substitutional Doping 534
    4.1 Substitutional Doping in Graphite 534
    4.2 Substitutional Doping in Nanotubes . 534
    4.3 Synthesis Methods for Substitutional Doped Nanotubes . 537
    4.3.1 Arc-Discharge Method . 537
    4.3.2 Laser-Ablation Method 537
    4.3.3 Chemical Vapor Deposition . 538
    4.3.4 B and N Substitution Reactions . 538
    4.3.5 Plasma-Assisted CVD 540
    5 Characterization Techniques for Studying Doped Nanotubes 540
    5.1 Morphological and Structural Characterization . 540
    5.1.1 Atomic Structure of N-Doped MWNTs . 541
    5.1.2 Atomic Structure of B-Doped MWNTs . 542
    5.1.3 Atomic Structure of Doped SWNTs . 542
    5.2 Electronic and Transport Characterization . 543
    5.3 Raman Characterization . 546
    5.3.1 Nonsubstitutional n-Type Doped Nanotubes 546
    5.3.2 Nonsubstitutional p-Type Doped Nanotubes 550
    5.3.3 Raman Spectroscopy for Inplane Doped Nanotubes 551
    6 Applications of Doped Nanotubes . 553
    7 Perspectives and Challenges 555
    References . 558
    Index 566
    Electrochemistry of Carbon Nanotubes
    Ladislav Kavan and Lothar Dunsch . 567
    1 Electrochemistry of Nanotubes: Fundamentals 567
    1.1 Introduction . 567
    1.2 Potential-Dependent Reactions . 568
    1.3 Faradaic and Non-Faradaic Processes
    in Nanocarbons (Nanotubes, Fullerenes) . 569
    Contents XXIII
    1.4 Doping of Nanocarbons 571
    2 Experimental Techniques . 575
    2.1 Materials in Electrochemical Studies of Nanotubes 575
    2.2 Voltammetry . 575
    2.3 Methods of Spectroelectrochemistry . 578
    3 Practical Applications of Charge Transfer at Nanotubes 579
    3.1 Electrochemical Synthesis and Behavior of Nanotubes . 579
    3.2 Practical Devices . 580
    4 Spectroelectrochemistry of Nanotubes 582
    4.1 Vis-NIR Spectroelectrochemistry . 582
    4.2 Raman Spectroelectrochemistry 585
    4.2.1 SWNTs 586
    4.2.2 Fullerene Peapods . 589
    4.2.3 Double-Walled Carbon Nanotubes . 589
    4.3 Combined Chemical/Electrochemical Doping . 592
    4.4 Single-Nanotube Studies . 593
    5 Summary and Outlook . 594
    References . 595
    Index 602
    Single-Wall Carbon Nanohorns and Nanocones
    Masako Yudasaka, Sumio Iijima, and Vincent H. Crespi . 605
    1 Introduction 605
    2 Geometrical Definition of the Cone 606
    3 Structure, Production, and Growth Mechanism
    of Single-Wall Carbon Nanohorns . 607
    4 Properties of Single-Wall Nanohorns . 611
    5 Applications of Single-Wall Nanohorns . 612
    6 Comparison of Single-Wall Nanohorns
    to Single-Wall Nanotubes . 616
    7 Mechanical Response of Carbon Nanocones . 617
    8 Electronic Properties of Carbon Cones . 619
    9 Conclusion . 622
    References . 622
    Index 628
    Inorganic Nanotubes and Fullerene-Like Structures (IF)
    R. Tenne, M. Remˇskar, A. Enyashin, and G. Seifert . 631
    1 Introduction 631
    2 Synthesis of INT and IF Materials . 634
    2.1 Physical Techniques . 634
    2.2 Soft Chemistry “Chemie Douce” 637
    2.3 High-Temperature Reactions . 639
    3 Structural Characterization and Stability . 641
    3.1 General Considerations 641
    XXIV Contents
    3.2 Strain-Relaxation Mechanisms in the Nanotubes 643
    3.3 Studies of Some Specific Systems . 645
    4 Physical Properties 649
    4.1 Mechanical Properties . 649
    4.2 Electronic and Optical Properties . 651
    5 Applications 655
    5.1 Tribological Applications 655
    5.2 Towards High-Strength Nanocomposites . 656
    5.3 Li Intercalation and Hydrogen Sorption in MS2 Nanotubes . 656
    5.4 Solar Cells, Photocatalysis and Sensors 657
    5.5 Biotechnology 658
    5.6 Catalysis 658
    6 Conclusions . 659
    References . 660
    Index 669
    Electron and Phonon Properties of Graphene: Their
    Relationship with Carbon Nanotubes
    J.-C. Charlier, P. C. Eklund J. Zhu, A. C. Ferrari . 673
    1 Introduction 673
    2 Electronic Properties and Transport Measurements 675
    2.1 Graphene 675
    2.1.1 Electronic Band Structure 675
    2.1.2 Transport Measurements in Single-Layer Graphene 678
    2.2 Graphene Nanoribbons 681
    2.3 Graphite and n-Graphene Layer Systems 684
    3 Optical Phonons and Raman Spectroscopy . 686
    3.1 Raman D and G Bands, Double Resonance
    and Kohn Anomalies 686
    3.2 Electron–Phonon Coupling from Phonon Dispersions
    and Raman Linewidths 689
    3.3 The Raman Spectrum of Graphene
    and n-Graphene Layer Systems . 690
    3.4 Doped Graphene: Breakdown of the Adiabatic Born–
    Oppenheimer Approximation . 694
    4 Implications for Phonons and Raman Scattering in Nanotubes 697
    4.1 Adiabatic Kohn Anomalies . 697
    4.2 Nonadiabatic Kohn Anomalies 698
    4.3 The Raman G Peak of Nanotubes 698
    5 Outlook 701
    References . 701
    Index 708
    Index . 711
     
Đang tải...