Sách Tính chất vật lý của ống nanocarbon

Thảo luận trong 'Sách Khoa Học' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    167
    Điểm thành tích:
    0
    Xu:
    0Xu
    Part I Theory and Modelling
    1 From Quantum Models to Novel Effects
    to New Applications: Theory of Nanotube Devices
    S.V. Rotkin 3
    1.1 Introduction: Classical vs. Quantum Modelling 3
    1.2 Classical Terms: Weak Screening in 1D Systems 5
    1.2.1 Drift–Diffusion Equation
    and Quasi–equilibrium Charge Density . 6
    1.2.2 Linear Conductivity and Transconductance . 7
    1.2.3 Numerical Results and Discussion . 9
    1.3 Quantum Terms. I. Quantum Capacitance 11
    1.3.1 Statistical Approach
    to Calculating Self-Consistent Charge Density
    in SWNT in Vacuum 13
    1.3.2 Green’s Function Approach for Geometric Capacitance . 15
    1.3.3 Results and Discussion . 17
    1.4 Quantum Terms. II. Spontaneous Symmetry Breaking 18
    1.4.1 Splitting of SWNT Subband Due to Interaction
    with the Substrate . 18
    1.4.2 Charge Injection due to the Fermi Level Shift . 21
    1.4.3 Dipole Polarization Correction 23
    Level Shift . 21
    1.4.3 Dipole Polarization Correction 23
    1.5 Quantum Terms. III. Band Structure Engineering 25
    1.5.1 Band Gap Opening and Closing in Uniform Fields . 26
    1.6 Novel Device Concepts:
    Metallic Field–Effect Transistor (METFET) . 29
    1.6.1 Symmetry and Selection Rules in Armchair Nanotubes . 30
    1.6.2 Gap Opening and Switching OFF: Armchair SWNT . 32
    1.6.3 Switching OFF Quasi–metallic Zigzag Nanotube 33
    1.6.4 Modulation of Ballistic Conductance . 34
    1.6.5 Results and Discussion . 35
    References . 37
    XIV Contents
    2 Symmetry Based Fundamentals of Carbon Nanotubes
    M. Damnjanovi´c, I. Milo¡sevi´c, E. Dobard¡zi´c, T. Vukovi´c, B. Nikoli´c 41
    2.1 Introduction . 41
    2.2 Configuration and Symmetry 42
    2.2.1 Single-Wall Nanotubes . 42
    2.2.2 Double-Wall Nanotubes 45
    2.3 Symmetry Based Band Calculations 49
    2.3.1 Modified Wigner Projectors . 49
    2.3.2 Symmetry and Band Topology 52
    2.3.3 Quantum Numbers and Selection Rules 53
    2.3.4 Electron Bands . 54
    2.3.5 Force Constants Phonon Dispersions . 57
    2.4 Optical Absorption . 60
    2.4.1 Conventional Nanotubes . 60
    2.4.2 Template Grown Nanotubes 65
    2.5 Phonons 68
    2.5.1 Infinite SWNTs . 68
    2.5.2 Commensurate Double-Wall Nanotubes 74
    2.6 Symmetry Breaks Friction: Super-Slippery Walls . 80
    2.6.1 Symmetry and Interaction 80
    2.6.2 Numerical Results . 82
    References . 85
    3 Elastic Continuum Models of Phonons
    in Carbon Nanotubes
    A. Raichura, M. Dutta, M.A. Stroscio . 89
    3.1 Introduction . 89
    3.2 Acoustic Modes in Single Wall Nanotubes . 90
    3.2.1 Model . 90
    3.2.2 Dispersion Curves . 94
    3.2.3 Deformation Potential . 97
    3.3 Optical Modes in Multi-wall Nanotubes . 102
    3.3.1 Model . 102
    3.3.2 Normalization of LO Phonon Modes . 103
    3.3.3 Optical Deformation Potential 107
    3.4 Quantized Vibrational Modes in Hollow Spheres . 108
    3.5 Conclusions . 109
    References . 109
    Contents XV
    Part II Synthesis and Characterization
    4 Direct Growth of Single Walled Carbon Nanotubes
    on Flat Substrates for Nanoscale Electronic Applications
    Shaoming Huang, Jie Liu 113
    4.1 Introduction . 113
    4.2 Diameter Control 114
    4.3 Orientation Control 118
    4.4 Growth of Superlong and Well-Aligned SWNTs
    on a Flat Surface by the “Fast-Heating” Process . 119
    4.5 Growth Mechanism 122
    4.6 Advantages of Long and Oriented Nanotubes
    for Device Applications . 129
    4.7 Summary . 129
    References . 130
    5 Nano-Peapods Encapsulating Fullerenes
    Toshiya Okazaki, Hisanori Shinohara 133
    5.1 Introduction . 133
    5.2 High-Yield Synthesis of Nano-Peapods 134
    5.3 Packing Alignment of the Fullerenes Inside SWNTs 137
    5.4 Electronic Structures of Nano-Peapods . 139
    5.5 Transport Properties of Nano-Peapods 142
    5.6 Nano-Peapod as a Sample Cell at Nanometer Scale . 144
    5.7 Peapod as a “Nano-Reactor” 145
    5.8 Conclusions . 148
    References . 148
    6 The Selective Chemistry
    of Single Walled Carbon Nanotubes
    M.S. Strano, M.L. Usrey, P.W. Barone, D.A. Heller, S. Baik . 151
    6.1 Introduction: Advances in Carbon Nanotube Characterization . 151
    6.2 Selective Covalent Chemistry
    of Single-Walled Carbon Nanotubes 153
    6.2.1 Motivation and Background 153
    6.2.2 Review of Carbon Nanotube Covalent Chemistry 153
    6.2.3 The Pyramidalization Angle Formalism
    for Carbon Nanotube Reactivity . 154
    6.2.4 The Selective Covalent Chemistry
    of Single-Walled Carbon Nanotubes 155
    6.2.5 Spectroscopic Tools
    for Understanding Selective Covalent Chemistry . 160
    6.3 Selective Non-covalent Chemistry: Charge Transfer . 164
    6.3.1 Single-Walled Nanotubes and Charge Transfer 164
    XVI Contents
    6.3.2 Selective Protonation of Single-Walled Carbon Nanotubes
    in Solution . 164
    6.3.3 Selective Protonation of Single-Walled Carbon Nanotubes
    Suspended in DNA 169
    6.4 Selective Non-covalent Chemistry: Solvatochromism 170
    6.4.1 Introduction and Motivation 170
    6.4.2 Fluorescence Intensity Changes . 171
    6.4.3 Wavelength Shifts . 171
    6.4.4 Changes to the Raman Spectrum 174
    References . 177
    Part III Optical Spectroscopy
    7 Fluorescence Spectroscopy
    of Single-Walled Carbon Nanotubes
    R.B. Weisman 183
    7.1 Introduction . 183
    7.2 Observation of Photoluminescence . 185
    7.3 Deciphering the (n, m) Spectral Assignment 186
    7.4 Implications of the Spectral Assignment 187
    7.5 Transition Line Shapes
    and Single-Nanotube Optical Spectroscopy 192
    7.6 Influence of Sample Preparation on Optical Spectra 194
    7.7 Spectrofluorimetric Sample Analysis 195
    7.8 Detection, Imaging, and Electroluminescence 198
    7.9 Conclusions . 200
    References . 200
    8 The Raman Response of Double Wall Carbon Nanotubes
    F. Simon, R. Pfeiffer, C. Kramberger, M. Holzweber,
    H. Kuzmany 203
    8.1 Introduction . 203
    8.2 Experimental 205
    8.3 Results and Discussion . 206
    8.3.1 Synthesis of Double-Wall Carbon Nanotubes 206
    8.3.2 Energy Dispersive Raman Studies of DWCNTs 211
    References . 222
    Contents XVII
    Part IV Transport and Electromechanical Applications
    9 Carbon Nanotube Electronics and Optoelectronics
    Ph. Avouris, M. Radosavljevi´c, S.J. Wind 227
    9.1 Introduction . 227
    9.2 Electronic Structure and Electrical Properties
    of Carbon Nanotubes . 228
    9.3 Potential and Realized Advantages of Carbon Nanotubes
    in Electronics Applications 230
    9.4 Fabrication and Performance
    of Carbon Nanotube Field-Effect Transistors 231
    9.5 Carbon Nanotube Transistor Operation in Terms
    of a Schottky Barrier Model . 235
    9.6 The Role of Nanotube Diameter and Gate Oxide Thickness . 237
    9.7 Environmental Influences on the Performance of CNT-FETs . 239
    9.8 Scaling of CNT-FETs 241
    9.9 Prototype Carbon Nanotube Circuits . 242
    9.10 Optoelectronic Properties of Carbon Nanotubes 244
    9.11 Summary . 248
    References . 249
    10 Carbon Nanotube–Biomolecule Interactions:
    Applications in Carbon Nanotube Separation and Biosensing
    A. Jagota, B.A. Diner, S. Boussaad, M. Zheng . 253
    10.1 Introduction . 253
    10.2 DNA-Assisted Dispersion and Separation of Carbon Nanotubes 254
    10.3 Separation of Carbon Nanotubes Dispersed
    by Non-ionic Surfactant . 258
    10.4 Structure and Electrostatics of the DNA/CNT Hybrid Material 262
    10.4.1 Structure of the DNA/CNT Hybrid 262
    10.4.2 Electrostatics of Elution of the DNA/CNT Hybrid . 264
    10.5 Effects of Protein Adsorption on the Electronic Properties
    of Single Walled Carbon Nanotubes 267
    References . 270
    11 Electrical and Mechanical Properties
    of Nanotubes Determined Using In-situ TEM Probes
    J. Cumings, A. Zettl 273
    11.1 Introduction . 273
    11.1.1 Carbon and BN Nanotubes . 273
    11.1.2 TEM Nanomanipulation . 277
    11.2 Studies of Carbon Nanotubes 278
    11.2.1 Electrically-Induced Mechanical Failure
    of Multiwall Carbon Nanotubes . 278
    XVIII Contents
    11.2.2 Peeling and Sharpening Multiwall Carbon Nanotubes 281
    11.2.3 Telescoping Nanotubes:
    Linear Bearings and Variable Resistors . 283
    11.3 Studies of Boron Nitride Nanotubes 299
    11.4 Electron Field Emission from BN Nanotubes 300
    11.5 Electrical Breakdown and Conduction
    of BN Nanotubes 302
    References . 303
    12 Nanomanipulator Measurements of the Mechanics
    of Nanostructures and Nanocomposites
    F.T. Fisher, D.A. Dikin, X. Chen, R.S. Ruoff 307
    12.1 Introduction . 307
    12.2 Nanomanipulators . 309
    12.2.1 Initial Nanomanipulator Development 309
    12.2.2 Recent Nanoscale Testing Stage Development . 311
    12.3 Nanomanipulator-Based Mechanics Measurements 318
    12.3.1 Tensile Loading of Nanostructures . 318
    12.3.2 Induced Vibrational Resonance Methods . 328
    12.4 Summary and Future Directions . 333
    References . 335
    Color Plates 339
    Index . 345
     

    Các file đính kèm:

Đang tải...