Steven Shreve: Stochastic Calculus and Finance Contents 1 Introduction to Probability Theory 11 1.1 The Binomial Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Finite Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Lebesgue Measure and the Lebesgue Integral . . . . . . . . . . . . . . . . 22 1.4 General Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.5.1 Independence of sets . . . . . . . . . . . . . . . . . . . . . . . 40 1.5.2 Independence of -algebras . . . . . . . . . . . . . . . . . . . . . 41 1.5.3 Independence of random variables . . . . . . . . . . . . . . . . . . . . 42 1.5.4 Correlation and independence . . . . . . . . . . . . . . . . . . . . 44 1.5.5 Independence and conditional expectation. . . . . . . . . . . . . . 45 1.5.6 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . 46 1.5.7 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . 47 2 Conditional Expectation 49 2.1 A Binomial Model for Stock Price Dynamics . . . . . . . . . . . . . . . . 49 2.2 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.2 Definition of Conditional Expectation . . . . . . . . . . . . . . . . 53 2.3.3 Further discussion of Partial Averaging . . . . . . . . . . . . . . . 54 2.3.4 Properties of Conditional Expectation . . . . . . . . . . . . . . . . 55 2.3.5 Examples from the Binomial Model . . . . . . . . . . . . . . . . . 57 2.4 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1