Sách Sharply transitive 1-factorizations of complete multipartite graphs

Thảo luận trong 'Sách Ngoại Ngữ' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    Given a finite group G of even order, which graphs Γ have a 1ưfactorization admitting G as automorphism group with a sharply transitive action on the vertex-set? Starting from this question, we prove some general results and develop an exhaustive analysis when Γ is a complete multipartite graph and G is cyclic.A 1ưfactor of a graph is a collection of edges such that each vertex is incident with exactly one edge. a factorization of a regular graph is a partition of the edge set of the graph into disjoint factors. If the graph has valency v, then a factorization is equivalent to a coloring of the edges in v colors (one color for each factor).
     

    Các file đính kèm:

    • 35-.pdf
      Kích thước:
      183.5 KB
      Xem:
      0