Tiểu Luận Phương pháp ngoại suy và ứng dụng trong dự báo

Thảo luận trong 'Marketing' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    Đề tài: PHƯƠNG PHÁP NGOẠI SUY VÀ ỨNG DỤNG TRONG DỰ BÁO
    Định dạng file word

    I.
    TỔNG QUAN VỀ DỰ BÁO
    1. Khái niệm về dự báo
    Dự báo là một khoa học và nghệ thuật tiên đoán những sự việc sẽ xảy ra trong tương lai, trên cơ sở phân tích khoa học về các dữ liệu đã thu thập được. Khi tiến hành dự báo cần căn cứ vào việc thu thập, xử lý số liệu trong quá khứ và hiện tại để xác định xu hướng vận động của các hiện tượng trong tương lai nhờ vào một số mô hình toán học (Định lượng). Tuy nhiên dự báo cũng có thể là một dự đoán chủ quan hoặc trực giác về tương lai (Định tính) và để dự báo định tính được chính xác hơn, người ta cố loại trừ những tính chủ quan của người dự báo.
    Dù định nghĩa có sự khác biệt nào đó, nhưng đều thống nhất về cơ bản là dự báo bàn về tương lai, nói về tương lai. Dự báo trước hết là một thuộc tính không thể thiếu của tư duy của con người, con người luôn luôn nghĩ đến ngày mai, hướng về tương lai. Trong thời đại công nghệ thông tin và toàn cầu hóa, dự báo lại đóng vai trò quan trọng hơn khi nhu cầu về thông tin thị trường, tình hình phát triển tại thời điểm nào đó trong tương lai càng cao. Dự báo được sử dụng trong nhiều lĩnh vực khác nhau, mỗi lĩnh vực có một yêu cầu về dự báo riêng nên phương pháp dự báo được sử dụng cũng khác nhau.
    2. Đặc điểm của dự báo
    - Không có cách nào để xác định tương lai là gì một cách chắc chắn (tính không chính xác của dự báo). Dù phương pháp chúng ta sử dụng là gì thì luôn tồn tại yếu tố không chắc chắn cho đến khi thực tế diễn ra.
    - Luôn có điểm mù trong các dự báo. Chúng ta không thể dự báo một cách chính xác hoàn toàn điều gì sẽ xảy ra trong tương tương lai. Hay nói cách khác, không phải cái gì cũng có thể dự báo được nếu chúng ta thiếu hiểu biết về vấn đề cần dự báo.
    - Dự báo cung cấp kết quả đầu vào cho các nhà hoạch định chính sách trong việc đề xuất các chính sách phát triển kinh tế, xã hội. Chính sách mới sẽ ảnh hưởng đến tương lai, vì thế cũng sẽ ảnh hưởng đến độ chính xác của dự báo.
    3. Các phương pháp dự báo
    Có nhiều học giả có cách phân loại phương pháp dự báo khác nhau. Tuy nhiên theo học giả Gordon , trong 2 thập kỷ gần đây, có 8 phương pháp dự báo được áp dụng rộng rãi trên thế giới:
    + Tiên đoán
    + Ngoại suy xu hướng
    + Phương pháp chuyên gia
    + Phương pháp mô phỏng
    + Phương pháp ma trận tác động qua lại
    + Phương pháp kịch bản
    + Phương pháp cây quyết định
    + Phương pháp dự báo tổng hợp
    Tuy nhiên, theo cách phân loại tại Việt Nam các phương pháp dự báo thường chia thành 2 nhóm chính là phương pháp định tính và phương pháp định lượng.
    3.1 Phương pháp dự báo định tính
    Phương pháp này dựa trên cơ sở nhận xét của những yếu tố liên quan, dựa trên những ý kiến về các khả năng có liên hệ của những yếu tố liên quan này trong tương lai. Phương pháp định tính có liên quan đến mức độ phức tạp khác nhau, từ việc khảo sát ý kiến được tiến hành một cách khoa học để nhận biết các sự kiện tương lai hay từ ý kiến phản hồi của một nhóm đối tưởng hưởng lợi (chịu tác động) nào đó.
    3.2 Phương pháp dự báo định lượng
    Mô hình dự báo định lượng dựa trên số liệu quá khứ, những số liệu này giả sử có liên quan đến tương lai và có thể tìm thấy được. Tất cả các mô hình dự báo theo định lượng có thể sử dụng thông qua chuỗi thời gian và các giá trị này được quan sát đo lường các giai đoạn theo từng chuỗi .
    Tuy nhiên hiện nay thông thường khi dự báo người ta thường hay kết hợp cả phương pháp định tính và định lượng để nâng cao mức độ chính xác của dự báo. Bên cạnh đó, vấn đề cần dự báo đôi khi không thể thực hiện được thông qua một phương pháp dự báo đơn lẻ mà đòi hỏi kết hợp nhiều hơn một phương pháp nhằm mô tả đúng bản chất sự việc cần dự báo.
    4. Quy trình dự báo
    Thông thường trong các dự báo về kinh tế, quy trình dự báo được chia thành các bước sau. Các bước này bắt đầu và kết thúc với sự trao đổi giữa người sử dụng và người làm dự báo.
    Bước 1. Xác định mục tiêu dự báo
    Bước 2. Xác định loại dự báo
    Bước 3. Chọn mô hình dự báo
    Bước 4. Thu thập số liệu và tiến hành dự báo
    Bước 5. Ứng dụng kết quả dự báo
    Bước 6. Theo dõi kết quả dự báo




    II. PHƯƠNG PHÁP NGOẠI SUY VÀ ỨNG DỤNG TRONG DỰ BÁO
    Ngoại suy là một phương pháp dự báo tương đối đơn giản, ít tốn kém, do vậy được sử dụng khá phổ biến trong dự báo kinh tế - xã hội. Trong phạm vi bài viết này, tác giả trình bày một cách khái quát ngoại suy là gì, các ưu điểm và nhược điểm của nó, các tình huống nên sử dụng ngoại suy.
    1. Khái niệm phương pháp ngoại suy
    Ngoại suy (Extrapolation) là dựa trên những số liệu đã có về một đối tượng được quan tâm để đưa ra suy đoán hoặc dự báo về hành vi của đối tượng đó trong tương lai. Ngoại suy có 2 dạng chính là ngoại suy theo số liệu lát cắt và ngoại suy theo chuỗi số liệu lịch sử.
    Ngoại suy theo số liệu lát cắt (Extrapolation for cross-sectional data) là dựa trên hành vi của một số thành phần tại một thời điểm nào đó để ngoại suy về hành vi của các thành phần khác cũng tại thời điểm đó.
    Ngoại suy theo chuỗi số liệu (Time-series extrapolation) là dựa trên chuỗi số liệu lịch sử và sử dụng kỹ thuật kinh tế lượng để đưa ra dự báo đối với biến quan tâm. Giả thiết cơ bản là hành vi của biến được dự báo sẽ tiếp tục trong tương lai như đã diễn ra trong quá khứ.
    2. Khi nào nên sử dụng ngoại suy để dự báo
    Điều cần biết trước hết là khi nào nên sử dụng ngoại suy để dự báo. Không phải lúc nào sử dụng ngoại suy cũng là phù hợp, mà chỉ nên sử dụng ngoại suy khi gặp một trong các tình huống sau.
    Số lượng dự báo rất lớn. Chẳng hạn như một công ty sản xuất hàng trăm sản phẩm khác nhau và cần phải dự báo về lượng tiêu thụ và tồn kho các sản phẩm cho từng tuần. Khi đó số lượng các dự báo là rất lớn. Trong trường hợp này, quy trình dự báo bằng ngoại suy được tự động hoá là phù hợp vì nhanh chóng và đỡ tốn kém.
     

    Các file đính kèm:

Đang tải...