Tiểu Luận Một số giải pháp hướng dẫn học sinh năng khiếu toán lớp 5 giải các bài toán chuyển động của kim đồ

Thảo luận trong 'Khảo Cổ Học' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    MỘT SỐ GIẢI PHÁP HƯỚNG DẪN HỌC SINH NĂNG KHIẾU TOÁN LỚP 5
    GIẢI CÁC BÀI TOÁN CHUYỂN ĐỘNG CỦA KIM ĐỒNG HỒ
    ----------------------***--------------------

    A/ ĐẶT VẤN ĐỀ:
    Toán học có một vai trò hết sức quan trọng trong đời sống thực tế của nhân loại. Chính vì thế, môn Toán luôn được chú trọng và được dành một thời lượng rất lớn trong việc giảng dạy chương trình Giáo dục phổ thông. Theo yêu cầu của Bộ Giáo dục và Đào tạo về đổi mới nội dung và phương pháp dạy học ở Tiểu học, ngoài việc tổ chức các hoạt động dạy học để học sinh nắm được kiến thức chuẩn thì tùy vào năng lực của học sinh, giáo viên cần phải phát triển, khai thác, mở rộng thêm kiến thức một cách phù hợp để đáp ứng nhu cầu học tập của các em.
    Trong những năm học gần đây, Quỳnh Lưu là một trong những huyện đã triển khai và tổ chức có hiệu quả việc dạy học 2buổi/ngày theo hướng phân hóa đối tượng học sinh. Đây là điều kiện để giáo viên có thể lựa chọn, phân nhóm đối tượng học sinh theo nguyện vọng, năng lực của các em để vừa phụ đạo, ôn tập củng cố lại kiến thức chuẩn (đối với đối tượng học sinh yếu, trung bình) và nâng cao kiến thức bồi dưỡng học sinh năng khiếu (đối với học sinh giỏi theo từng bộ môn), góp phần đào tạo nhân tài cho đất nước.
    Trong những năm học vừa qua, được Ban giám hiệu nhà trường phân công đảm nhận công tác bồi dưỡng học sinh năng khiếu Toán, khi nghiên cứu mở rộng, phát triển kiến thức để bồi dưỡng cho các em, chúng tôi nhận thấy ở chương trình Toán 5, có nhiều mảng, nhiều dạng toán phong phú, đa dạng, trong đó toán về chuyển động của kim đồng hồ là dạng khó. Nhưng đây là những bài toán rất lý thú, hoàn toàn có thể hướng dẫn học sinh giải theo phương pháp Tiểu học. Giáo viên cần cho học sinh tiếp cận để mở mang kiến thức, rèn luyện tư duy và khả năng nhanh nhạy cho các em khi học toán. Xuất phát từ vấn đề đó, chúng tôi đã lựa chọn và dày công nghiên cứu tìm ra những giải pháp tốt nhất để giúp học sinh học tốt dạng toán này.

    B/ THỰC TRẠNG CỦA VẤN ĐỀ:
    Trong hai năm học này, cuộc thi giải toán qua mạng Violympic được đông đảo học sinh trong toàn tỉnh hưởng ứng. Riêng với lớp 5, một số vòng cuối (vòng 27, vòng 28, vòng 33 .) các bài toán về chuyển động của kim đồng hồ xuất hiện khá nhiều. Khi gặp những bài toán này, các em học sinh thực sự lúng túng, hay nhầm lẫn, tốn mất nhiều thời gian làm ảnh hưởng đến kết quả chung cả vòng thi .Vậy nguyên nhân là do đâu? Qua thực tế giảng dạy và ý kiến trao đổi của một số đồng nghiệp, chúng tôi rút ra được một số nguyên nhân cơ bản sau:
    1) Về vấn đề tài liệu tham khảo: Thường ở các mảng toán khác, tài liệu nâng cao để giáo viên và học sinh tham khảo khá phong phú, nhưng các bài toán về chuyển động của kim đồng hồ lại ít được chú ý đến. Qua nghiên cứu rất nhiều tài liệu, chúng tôi thấy cuốn “ Toán chuyên đề số đo thời gian & chuyển động” của tác giả Phạm Đình Thực cho đến nay là cuốn duy nhất có chuyên đề dành riêng cho phần “Các bài toán về kim đồng hồ” nhưng phần này lại viết quá ít chỉ có duy nhất 1 bài mẫu liên quan đến sự chuyển động của các kim (các bài khác viết về đồng hồ điện tử và sự xuất hiện các số trên màn hình) và 4 bài luyện tập không cùng dạng với bài mẫu, trong đó có những bài phần hướng dẫn giải rất phức tạp, khó hiểu đối với cả giáo viên và học sinh. Ngoài ra, cuốn “Toán nâng cao lớp 5- Tập 2” của Vũ Dương Thụy, Đỗ Trung Hiệu có một số bài nữa, còn các cuốn khác hầu như không đề cập đến. Nguồn kiến thức để giáo viên tham khảo quá nghèo nàn.
    2) Về phía giáo viên: Vì đây là dạng khó nên trong thực tế giảng dạy thông thường các giáo viên chỉ dựa vào một số bài ở tài liệu ra bài rồi hướng dẫn học sinh giải, chưa chịu khó trong việc khai thác, phát triển thêm kiến thức, chưa biết cách phân chia thành các dạng bài, xây dựng cách thức tính thời gian cho mỗi dạng bài để cung cấp cho học sinh
    3) Đối với học sinh: Đây là dạng toán khó, trừu tượng đối với tư duy của học sinh Tiểu học, lại chưa được giáo viên chú trọng khắc sâu kiến thức. Vì vậy khi giải những bài toán này, các em thường gặp những khó khăn sau:
    - Không nhận diện được các bài toán đã cho thuộc dạng toán nào trong mảng toán chuyển động đều.
    - Cách hiểu vận tốc, hiệu vận tốc giữa kim phút và kim giờ còn mơ hồ.
    - Lúng túng trong việc xác định khoảng cách ban đầu giữa hai kim.
    - Nhầm lẫn cách tính thời gian giữa các dạng bài và các bài trong cùng dạng (hai kim chuyển động để trùng khít lên nhau; để tạo với nhau thành một góc vuông; tạo với nhau thành một đường thẳng; )
    Từ những nguyên nhân trên, chúng tôi đã cố gắng nghiên cứu tìm ra những giải pháp tốt nhất để các giáo viên có thể tự tin khi lên lớp bồi dưỡng và học sinh tiếp cận dạng toán này một cách hứng thú có hiệu quả.
    C/ GIẢI PHÁP THỰC HIỆN:
    I/ Xây dựng các công thức của dạng toán “Chuyển động cùng chiều đuổi nhau”:
    Dựa vào quan hệ chuyển động giữa các kim (được coi như là các động tử chuyển động trên mặt số của đồng hồ), phần lớn các bài toán về kim đồng hồ được xếp vào dạng “Chuyển động cùng chiều”. Giáo viên phải giúp học sinh xây dựng, nắm vững và vận dụng các công thức thuộc dạng toán này một cách thành thạo trước khi cho học sinh tiếp cận với các bài toán về kim đồng hồ. Việc xây dựng các công thức chỉ cần thông qua một bài toán đơn giản.
    * Ví dụ: Một người đi xe đạp từ B đến C với vận tốc 12km/giờ. Cùng lúc đó một người đi xe đạp từ A cách B 48 km với vận tốc 36km/giờ và đuổi theo xe đạp. Hỏi sau bao lâu xe máy đuổi kịp xe đạp? (B nằm trên AC)
    * GV vẽ sơ đồ tóm tắt nội dung bài toán:
    Giả sử N là điểm hai xe gặp nhau, ta có sơ đồ:
    [​IMG] [​IMG][​IMG][​IMG]Xe máy Xe đạp Chỗ gặp nhau
    [​IMG]

    A [SUP]48 km [/SUP]B N C
    * Hướng dẫn tìm hiểu: Cho học sinh quan sát sơ đồ:
    - Khi xe máy đuổi kịp xe đạp tại C thì mỗi xe đã đi được đoạn đường nào?
    (Xe máy đi được đoạn AN, xe đạp đi được đoạn BN)
    - Như vậy xe máy đã đi được hơn xe đạp đoạn đường nào?
    (Đoạn đường AB .Đó chính là khoảng cách lúc đầu giữa hai xe)
    - Mỗi giờ xe máy đi hơn xe đạp bao nhiêu km? (36 – 12 = 24 km)
    - Vậy thời gian cần thiết để xe máy đi hơn xe đạp 48 km (và cũng chính là thời gian để xe máy đuổi kịp xe đạp) là bao nhiêu?
    ( 48 : 24 = 2 giờ.)
    *Giáo viên viết gộp hai bước tính để có biểu thức:
    48 : ( 36 – 12 ) = 2 ( giờ )
    Cho học sinh nêu vai trò của mỗi sối liệu trên biểu thức, giáo viên ghi bảng;
    [​IMG] [​IMG] [​IMG] 48 : ( 36 – 12 ) = 2 ( giờ )

    Khoảng cách giữa 2 động tử Hiệu vận tốc Thời gian đuổi kịp nhau
    Từ đây, GV cho HS quan sát biểu thức để rút ra kết luận: Hai động tử có khoảng cách AB cùng khởi hành một lúc để đuổi kịp nhau thì thời gian đuổi kịp được tính như sau:
    + Thời gian = Khoảng cách : Hiệu hai vận tốc[SUB](1)[/SUB].
    Từ công thức [SUB](1)[/SUB] các em có thể dễ dàng suy ra được hai công thức tiếp theo:
    + Khoảng cách = Hiệu vận tốc x Thời gian đuổi kịp[SUB](2)[/SUB].
    + Thời gian đuổi kịp = Khoảng cách : Hiệu hai vận tốc[SUB](3)[/SUB].
    * Giáo viên cho Hs đọc thuộc 3 công thức để áp dụng giải các bài toán “Chuyển động cùng chiều đuổi nhau”, trong đó có các bài toán về kim đồng hồ.
     

    Các file đính kèm:

Đang tải...