Tài liệu Handbook of Biodegradable Polymers

Thảo luận trong 'Hóa Học' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    167
    Điểm thành tích:
    0
    Xu:
    0Xu
    Contents
    Preface XV
    List of Contributors XVII
    1 Polyesters 1
    Adam L. Sisson, Michael Schroeter, and Andreas Lendlein
    1.1 Historical Background 1
    1.1.1 Biomedical Applications 1
    1.1.2 Poly(Hydroxycarboxylic Acids) 2
    1.2 Preparative Methods 3
    1.2.1 Poly(Hydroxycarboxylic Acid) Syntheses 3
    1.2.2 Metal-Free Synthetic Processes 6
    1.2.3 Polyanhydrides 6
    1.3 Physical Properties 7
    1.3.1 Crystallinity and Thermal Transition Temperatures 7
    1.3.2 Improving Elasticity by Preparing Multiblock Copolymers 9
    1.3.3 Covalently Crosslinked Polyesters 11
    1.3.4 Networks with Shape-Memory Capability 11
    1.4 Degradation Mechanisms 12
    1.4.1 Determining Erosion Kinetics 12
    1.4.2 Factors Affecting Erosion Kinetics 13
    1.5 Beyond Classical Poly(Hydroxycarboxylic Acids) 14
    1.5.1 Alternate Systems 14
    1.5.2 Complex Architectures 15
    1.5.3 Nanofabrication 16
    References 17
    2 Biotechnologically Produced Biodegradable Polyesters 23
    Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão
    2.1 Introduction 23
    2.2 History 24
    2.3 Polyhydroxyalkanoates – Granules Morphology 26
    2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and
    Other Polyhydroxyalkanoates 29
    2.4.1 Polyhydroxyalkanoates Biosynthesis on Microorganisms 29
    2.4.2 Plants as Polyhydroxyalkanoates Producers 32
    2.4.3 Microbial Degradation of Polyhydroxyalkanoates 33
    2.5 Extraction and Recovery 34
    2.6 Physical, Mechanical, and Thermal Properties of
    Polyhydroxyalkanoates 36
    2.7 Future Directions 37
    References 38
    3 Polyanhydrides 45
    Avi Domb, Jay Prakash Jain, and Neeraj Kumar
    3.1 Introduction 45
    3.2 Types of Polyanhydride 46
    3.2.1 Aromatic Polyanhydrides 46
    3.2.2 Aliphatic–Aromatic Polyanhydrides 49
    3.2.3 Poly(Ester-Anhydrides) and Poly(Ether-Anhydrides) 49
    3.2.4 Fatty Acid-Based Polyanhydrides 49
    3.2.5 RA-Based Polyanhydrides 49
    3.2.6 Amino Acid-Based Polyanhydrides 51
    3.2.7 Photopolymerizable Polyanhydrides 52
    3.2.8 Salicylate-Based Polyanhydrides 53
    3.2.9 Succinic Acid-Based Polyanhydrides 54
    3.2.10 Blends 55
    3.3 Synthesis 55
    3.4 Properties 58
    3.5 In Vitro Degradation and Erosion of Polyanhydrides 63
    3.6 In Vivo Degradation and Elimination of Polyanhydrides 64
    3.7 Toxicological Aspects of Polyanhydrides 65
    3.8 Fabrication of Delivery Systems 67
    3.9 Production and World Market 68
    3.10 Biomedical Applications 68
    References 71
    4 Poly(Ortho Esters) 77
    Jorge Heller4.1 Introduction 77
    4.2 POE II 79
    4.2.1 Polymer Synthesis 79
    4.2.1.1 Rearrangement Procedure Using an Ru(PPh3)3Cl2 Na2CO3
    Catalyst 80
    4.2.1.2 Alternate Diketene Acetals 80
    4.2.1.3 Typical Polymer Synthesis Procedure 80
    4.2.2 Drug Delivery 81
    4.2.2.1 Development of Ivermectin Containing Strands to Prevent Heartworm
    Infestation in Dogs 81
    4.2.2.2 Experimental Procedure 81
    4.2.2.3 Results 82
    4.3 POE IV 82
    4.3.1 Polymer Synthesis 82
    4.3.1.1 Typical Polymer Synthesis Procedure 82
    4.3.1.2 Latent Acid 83
    4.3.1.3 Experimental Procedure 83
    4.3.2 Mechanical Properties 83
    4.4 Solid Polymers 86
    4.4.1 Fabrication 86
    4.4.2 Polymer Storage Stability 87
    4.4.3 Polymer Sterilization 87
    4.4.4 Polymer Hydrolysis 88
    4.4.5 Drug Delivery 91
    4.4.5.1 Release of Bovine Serum Albumin from Extruded Strands 91
    4.4.5.2 Experimental Procedure 93
    4.4.6 Delivery of DNA Plasmid 93
    4.4.6.1 DNA Plasmid Stability 94
    4.4.6.2 Microencapsulation Procedure 94
    4.4.7 Delivery of 5-Fluorouracil 95
    4.5 Gel-Like Materials 96
    4.5.1 Polymer Molecular Weight Control 96
    4.5.2 Polymer Stability 98
    4.5.3 Drug Delivery 99
    4.5.3.1 Development of APF 112 Mepivacaine Delivery System 99
    4.5.3.2 Formulation Used 99
    4.5.4 Preclinical Toxicology 100
    4.5.4.1 Polymer Hydrolysate 100
    4.5.4.2 Wound Instillation 100
    4.5.5 Phase II Clinical Trial 100
    4.5.6 Development of APF 530 Granisetron Delivery System 100
    4.5.6.1 Preclinical Toxicology 100
    4.5.6.2 Rat Study 101
    4.5.6.3 Dog Study 101
    4.5.6.4 Phase II and Phase III Clinical Trials 101
    4.6 Polymers Based on an Alternate Diketene Acetal 102
    4.7 Conclusions 104
    References 104
    5 Biodegradable Polymers Composed of Naturally Occurring
    α-Amino Acids 107
    Ramaz Katsarava and Zaza Gomurashvili
    5.1 Introduction 107
    5.2 Amino Acid-Based Biodegradable Polymers (AABBPs) 109
    5.2.1 Monomers for Synthesizing AABBPs 109
    5.2.1.1 Key Bis-Nucleophilic Monomers 109
    5.2.1.2 Bis-Electrophiles 111
    5.2.2 AABBPs’ Synthesis Methods 111
    5.2.3 AABBPs: Synthesis, Structure, and Transformations 115
    5.2.3.1 Poly(ester amide)s 115
    5.2.3.2 Poly(ester urethane)s 119
    5.2.3.3 Poly(ester urea)s 119
    5.2.3.4 Transformation of AABBPs 119
    5.2.4 Properties of AABBPs 121
    5.2.4.1 MWs, Thermal, Mechanical Properties, and Solubility 121
    5.2.4.2 Biodegradation of AABBPs 121
    5.2.4.3 Biocompatibility of AABBPs 123
    5.2.5 Some Applications of AABBPs 124
    5.2.6 AABBPs versus Biodegradable Polyesters 125
    5.3 Conclusion and Perspectives 126
    References 127
    6 Biodegradable Polyurethanes and Poly(ester amide)s 133
    Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí
    Abbreviations 133
    6.1 Chemistry and Properties of Biodegradable Polyurethanes 134
    6.2 Biodegradation Mechanisms of Polyurethanes 140
    6.3 Applications of Biodegradable Polyurethanes 142
    6.3.1 Scaffolds 142
    6.3.1.1 Cardiovascular Applications 143
    6.3.1.2 Musculoskeletal Applications 143
    6.3.1.3 Neurological Applications 144
    6.3.2 Drug Delivery Systems 144
    6.3.3 Other Biomedical Applications 145
    6.4 New Polymerization Trends to Obtain Degradable Polyurethanes 145
    6.4.1 Polyurethanes Obtained without Using Diisocynates 145
    6.4.2 Enzymatic Synthesis of Polyurethanes 146
    6.4.3 Polyurethanes from Vegetable Oils 147
    6.4.4 Polyurethanes from Sugars 147
    6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable
    Thermoplastics with Interest as New Biomaterials 149
    Acknowledgments 152
    References 152
    7 Carbohydrates 155
    Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu
    7.1 Introduction 155
    7.2 Alginate 156
    7.3 Carrageenan 160
    7.4 Cellulose and Its Derivatives 162
    7.5 Microbial Cellulose 164
    7.6 Chitin and Chitosan 165
    7.7 Dextran 169
    7.8 Gellan 171
    7.9 Guar Gum 174
    7.10 Hyaluronic Acid (Hyaluronan) 176
    7.11 Pullulan 180
    7.12 Scleroglucan 182
    7.13 Xanthan 184
    7.14 Summary 186
    Acknowledgments 187
    In Memoriam 187
    References 187
    8 Biodegradable Shape-Memory Polymers 195
    Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein
    8.1 Introduction 195
    8.2 General Concept of SMPs 197
    8.3 Classes of Degradable SMPs 201
    8.3.1 Covalent Networks with Crystallizable Switching Domains,
    Ttrans = Tm 202
    8.3.2 Covalent Networks with Amorphous Switching Domains,
    Ttrans = Tg 204
    8.3.3 Physical Networks with Crystallizable Switching Domains,
    Ttrans = Tm 205
    8.3.4 Physical Networks with Amorphous Switching Domains,
    Ttrans = Tg 208
    8.4 Applications of Biodegradable SMPs 209
    8.4.1 Surgery and Medical Devices 209
    8.4.2 Drug Release Systems 210
    References 212
    9 Biodegradable Elastic Hydrogels for Tissue Expander Application 217
    Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and
    Kang Moo Huh
    9.1 Introduction 217
    9.1.1 Hydrogels 217
    9.1.2 Elastic Hydrogels 217
    9.1.3 History of Elastic Hydrogels as Biomaterials 218
    9.1.4 Elasticity of Hydrogel for Tissue Application 219
    9.2 Synthesis of Elastic Hydrogels 220
    9.2.1 Chemical Elastic Hydrogels 220
    9.2.1.1 Polymerization of Water-Soluble Monomers in the Presence of
    Crosslinking Agents 220
    9.2.1.2 Crosslinking of Water-Soluble Polymers 221
    9.2.2 Physical Elastic Hydrogels 222
    9.2.2.1 Formation of Physical Elastic Hydrogels via Hydrogen Bonding 22
    9.2.2.2 Formation of Physical Elastic Hydrogels via
    Hydrophobic Interaction 224
    9.3 Physical Properties of Elastic Hydrogels 225
    9.3.1 Mechanical Property 225
    9.3.2 Swelling Property 227
    9.3.3 Degradation of Biodegradable Elastic Hydrogels 229
    9.4 Applications of Elastic Hydrogels 229
    9.4.1 Tissue Engineering Application 229
    9.4.2 Application of Elastic Shape-Memory Hydrogels as Biodegradable
    Sutures 230
    9.5 Elastic Hydrogels for Tissue Expander Applications 231
    9.6 Conclusion 233
    References 234
    10 Biodegradable Dendrimers and Dendritic Polymers 237
    Jayant Khandare and Sanjay Kumar
    10.1 Introduction 237
    10.2 Challenges for Designing Biodegradable Dendrimers 240
    10.2.1 Is Biodegradation a Critical Measure of Biocompatibility? 243
    10.3 Design of Self-Immolative Biodegradable Dendrimers 245
    10.3.1 Clevable Shells – Multivalent PEGylated Dendrimer for
    Prolonged Circulation 246
    10.3.1.1 Polylysine-Core Biodegradable Dendrimer Prodrug 250
    10.4 Biological Implications of Biodegradable Dendrimers 256
    10.5 Future Perspectives of Biodegradable Dendrimers 259
    10.6 Concluding Remarks 259
    References 260
    11 Analytical Methods for Monitoring Biodegradation Processes
    of Environmentally Degradable Polymers 263
    Maarten van der Zee
    11.1 Introduction 263
    11.2 Some Background 263
    11.3 Defi ning Biodegradability 265
    11.4 Mechanisms of Polymer Degradation 266
    11.4.1 Nonbiological Degradation of Polymers 266
    11.4.2 Biological Degradation of Polymers 267
    11.5 Measuring Biodegradation of Polymers 267
    11.5.1 Enzyme Assays 269
    11.5.1.1 Principle 269
    11.5.1.2 Applications 269
    11.5.1.3 Drawbacks 270
    11.5.2 Plate Tests 270
    11.5.2.1 Principle 270
    11.5.2.2 Applications 270
    11.5.2.3 Drawbacks 270
    1.5.3 Respiration Tests 271
    11.5.3.1 Principle 271
    11.5.3.2 Applications 271
    11.5.3.3 Suitability 271
    11.5.4 Gas (CO2 or CH4) Evolution Tests 272
    11.5.4.1 Principle 272
    11.5.4.2 Applications 272
    11.5.4.3 Suitability 273
    11.5.5 Radioactively Labeled Polymers 273
    11.5.5.1 Principle and Applications 273
    11.5.5.2 Drawbacks 273
    11.5.6 Laboratory-Scale Simulated Accelerating Environments 274
    11.5.6.1 Principle 274
    11.5.6.2 Applications 274
    11.5.6.3 Drawbacks 275
    11.5.7 Natural Environments, Field Trials 275
    11.6 Conclusions 275
    References 276
    12 Modeling and Simulation of Microbial Depolymerization Processes
    of Xenobiotic Polymers 283
    Masaji Watanabe and Fusako Kawai
    12.1 Introduction 283
    12.2 Analysis of Exogenous Depolymerization 284
    12.2.1 Modeling of Exogenous Depolymerization 284
    12.2.2 Biodegradation of PEG 287
    12.3 Materials and Methods 287
    12.3.1 Chemicals 287
    12.3.2 Microorganisms and Cultivation 287
    12.3.3 HPLC analysis 288
    12.3.4 Numerical Study of Exogenous Depolymerization 288
    12.3.5 Time Factor of Degradation Rate 291
    12.3.6 Simulation with Time-Dependent Degradation Rate 293
    12.4 Analysis of Endogenous Depolymerization 295
    12.4.1 Modeling of Endogenous Depolymerization 295
    12.4.2 Analysis of Enzymatic PLA Depolymerization 300
    12.4.3 Simulation of an Endogenous Depolymerization
    Process of PLA 302
    12.5 Discussion 306
    Acknowledgments 307
    References 307
    13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal
    Mucosal Defects in Head and Neck Surgery 309
    Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung,
    Andreas Lendlein, and Ralf-Peter Franke
    14.4.3 Architecture of Scaffold 353
    14.4.4 Barrier and Guidance Structure 354
    14.5 Biodegradable Polymers for Tissue Engineering 354
    14.5.1 Synthetic Polymers 355
    14.5.2 Biopolymers 356
    14.5.3 Calcium Phosphates 357
    14.6 Some Examples for Clinical Application of Scaffold 357
    14.6.1 Skin 357
    14.6.2 Articular Cartilage 357
    14.6.3 Mandible 358
    14.6.4 Vascular Tissue 359
    14.7 Conclusions 361
    References 361
    15 Drug Delivery Systems 363
    Kevin M. Shakesheff
    15.1 Introduction 363
    15.2 The Clinical Need for Drug Delivery Systems 364
    15.3 Poly(α-Hydroxyl Acids) 365
    15.3.1 Controlling Degradation Rate 366
    15.4 Polyanhydrides 368
    15.5 Manufacturing Routes 370
    15.6 Examples of Biodegradable Polymer Drug Delivery Systems
    Under Development 371
    15.6.1 Polyketals 371
    15.6.2 Synthetic Fibrin 371
    15.6.3 Nanoparticles 372
    15.6.4 Microfabricated Devices 373
    15.6.5 Polymer–Drug Conjugates 373
    15.6.6 Responsive Polymers for Injectable Delivery 375
    15.6.7 Peptide-Based Drug Delivery Systems 375
    15.7 Concluding Remarks 376
    References 376
    16 Oxo-biodegradable Polymers: Present Status and
    Future Perspectives 379
    Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles
    16.1 Introduction 379
    16.2 Controlled – Lifetime Plastics 380
    16.3 The Abiotic Oxidation of Polyolefi ns 382
    16.3.1 Mechanisms 383
    16.3.2 Oxidation Products 384
    16.3.3 Prodegradant Effects 386
    16.4 Enhanced Oxo-biodegradation of Polyolefi ns 387
    16.4.1 Biodegradation of Polyolefi n Oxidation Products 390
    16.4.2 Standard Tests 391
    16.4.3 Biometric Measurements 393
    16.5 Processability and Recovery of Oxo-biodegradable Polyolefi ns 395
    16.6 Concluding Remarks 396
    References 397
    Index 399
     

    Các file đính kèm: