Sách Enumeration Schemes for Permutations Avoiding Barred Patterns

Thảo luận trong 'Sách Ngoại Ngữ' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    1 Introduction
    Let q = q1    qm be a finite string of numbers. The reduction of q, denoted red(q), is
    the string obtained by replacing the ith smallest letter(s) of q with i. For example, the
    red(2674425) = 1452213. Given two permutations p ∈ Sn, q ∈ Sm, we say p contains q
    as a pattern if there exist 1 6 i1 <    < im 6 n such that red(pi
    1
       pim ) = q. Otherwise
    p avoids q. This definition of pattern avoidance appears in the characterization of 1-
    stack sortable permutations [11] and the characterization of smooth Schubert varieties
    [6]. Further, it introduces an interesting and well-studied enumeration problem; namely,
    count the elements of the set Sn(Q) = { p ∈ Sn | p avoids q for all q ∈ Q} .
    The focus of this paper is not the study Sn(Q), but a variation of pattern avoidance
    given by the following definitions. Given q
    , the barred permutation q
    is the permutation obtained by copying the entries of q
    and putting a bar over q
    if and
    only if bi = 1. Write Sm for the set of all barred permutations of length m. For example,
     

    Các file đính kèm:

Đang tải...