Sách Enumeration of perfect matchings of a type of quadratic lattice on the torus

Thảo luận trong 'Sách Ngoại Ngữ' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    Abstract
    A quadrilateral cylinder of length m and breadth n is the Cartesian product of a
    m-cycle(with m vertices) and a n-path(with n vertices). Write the vertices of the two
    cycles on the boundary of the quadrilateral cylinder as x1, x2,    , xm and y1, y2,    , ym,
    respectively, where xi corresponds to yi(i = 1, 2, . , m). We denote by Qm,n,r, the graph
    obtained from quadrilateral cylinder of length m and breadth n by adding edges xiyi+r (r
    is a integer, 0 6 r < m and i+r is modulo m). Kasteleyn had derived explicit expressions
    of the number of perfect matchings for Qm,n,0 [P. W. Kasteleyn, The statistics of dimers on
    a lattice I: The number of dimer arrangements on a quadratic lattice, Physica 27(1961),
    1209–1225]. In this paper, we generalize the result of Kasteleyn, and obtain expressions
    of the number of perfect matchings for Qm,n,r by enumerating Pfaffians.
    Keywords: Pfaffian; Perfect matching; Quadratic lattice; Torus.
     

    Các file đính kèm:

Đang tải...