Sách Counting subwords in a partition of a set

Thảo luận trong 'Sách Ngoại Ngữ' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    Abstract
    A partition π of the set [n] = {1, 2, . , n} is a collection {B1, . , Bk} of
    nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. In this
    paper, we find explicit formulas for the generating functions for the number of par-
    titions of [n] containing exactly k blocks where k is fixed according to the number
    of occurrences of a subword pattern τ for several classes of patterns, including all
    words of length 3. In addition, we find simple explicit formulas for the total number
    of occurrences of the patterns in question within all the partitions of [n] containing
    k blocks, providing both algebraic and combinatorial proofs.
     

    Các file đính kèm:

Đang tải...