Sách Aperiodic non-isomorphic lattices with equivalent percolation and random-cluster models.

Thảo luận trong 'Sách Ngoại Ngữ' bắt đầu bởi Thúy Viết Bài, 5/12/13.

  1. Thúy Viết Bài

    Thành viên vàng

    Bài viết:
    198,891
    Được thích:
    173
    Điểm thành tích:
    0
    Xu:
    0Xu
    We explicitly construct an uncountable class of infinite aperiodic plane graphs which have equal, and explicitly computable, bond percolation thresholds. Fur- thermore for both bond percolation and the random-cluster model all large scale properties, such as the values of the percolation threshold and the critical exponents, of the graphs are equal. This equivalence holds for all values of p and all q ∈ [0,∞] for the random-cluster model. The graphs are constructed by placing a copy of a rotor gadget graph or its reflection in each hyperedge of a connected self-dual 3-uniform plane hypergraph lattice. The exact bond percolation threshold may be explicitly determined as the root of a polynomial by using a generalised star-triangle transformation. Related randomly oriented models share the same bond percolation threshold value.
     

    Các file đính kèm:

    • 10-.pdf
      Kích thước:
      862.8 KB
      Xem:
      0
Đang tải...